Solar radiation drives the plant species distribution in urban built-up areas

Abstract

Urban areas serve as critical habitats for numerous plant species. Existing studies suggest that, due to human-mediated introductions, urban environments often harbor a greater variety of plant species compared to suburban areas, potentially becoming focal points for biodiversity. Consequently, investigating the driving forces and complex mechanisms by which urban environmental factors influence plant species distribution is essential for establishing the theoretical foundation for urban biodiversity conservation and future urban planning and management. Solar radiation, among these factors, is a critical determinant of plant growth, development, and reproduction. However, there is a notable lack of research on how this factor affects the distribution of urban plant species and influences species’ richness and composition within plant communities. We present for the first time an analysis of how solar radiation drives the spatial distribution of plant species within the built-up areas of Nanchang City, China. Based on three years of monitoring and survey data from experimental sites, this study employs three evaluation models-Species Richness Index (R), Simpson’s Diversity Index (D), and Shannon-Wiener Index (H)-to analyze and validate the survey results. Additionally, MATLAB and ArcGIS Pro software are utilized for the numerical simulation and visualization of spatial data. Our study shows that areas with low solar radiation exhibit higher plant species richness, while plots with high plant diversity are primarily concentrated in regions with strong solar radiation. Moreover, the Diversity Index D proves to be more sensitive than the Shannon-Wiener Index (H) in evaluating the spatial distribution of plant species, making it a more suitable metric for studying urban plant diversity in our study area. Among the 18 plant species analyzed, Mulberry and Dandelion are predominantly dispersed by birds and wind, showing no significant correlation with solar radiation. This finding indicates that the spatial distribution of urban plant species is influenced by multiple interacting factors beyond solar radiation, highlighting the critical need for long-term observation, monitoring, and analysis. This study also suggests that shaded urban areas may serve as hubs of high species richness, while regions with relatively strong solar radiation can sustain greater plant diversity. These findings underscore the practical significance of this research, offering essential insights to guide urban planning and management strategies. Additionally, this study offers valuable insights for the future predictions of plant species distribution and potential areas of high plant diversity in various urban settings by integrating computational models, building data, Digital Elevation Models (DEMs), and land cover data.

Publication
Heyi Wei
Heyi Wei
Visiting Scholar
Mingshu Wang
Mingshu Wang
Reader in Geospatial Data Science